
It might be supposed that relation (14.2) is the equation of minimal coupling and is 
always satisfied not just in linear approximation of a weak field fni- A theory with such 
a coupling equation would then belong to the class of so-called "quasilinear" theories of 
gravitation (in the terminology of Will). However, as is shown in the work [24~, any "quasi- 
linear," asymptotically Lorentz-invariant theory of gravitation contradicts the results of 
experiments. Therefore, the relation (14.2) must only be the expansion of the minimal cou- 
pling equation up to linear terms in a weak field fni- 

Thus, the equation of minimal coupling must be a quadratic equation in the field fni: 

1 Yn~f + ~[blfnmfi ~ + b2fnif + bsY~fmt f~+ b4u (14.3) 

with parameters of minimal coupling bl, b2, bs, and b4 which are so far undetermined. 

As we shall see below, the condition of coincidence of post-Newtonian expressions for 
the inertial and gravitational masses of a spherically symmetric body leads to the following 
relation between the parameters of minimal coupling: 2(bi + b2 + b3 + b4) = ~. 

It would be possible to consider also more complex coupling equations which in the weak- 
field approximation go over into the minimal coupling equation (14.3). However, at present 
we have no justification for such complication, since the equation of minimal coupling (14.3) 
describes all gravitational experiments. 

We therefore carry out all subsequent considerations on the basis of the equation of 
minimal coupling (14.3). Here we shall consider the condition of absence of singularities 
of the metric of the effective Riemannian space--time for finite values of the density of 
matter at the source of the gravitational field as the basic physical requirement imposing 
definite restrictions on the values of the parameters of minimal coupling. This assumption 
excludes the appearance in the field theory of gravitation of objects reminiscent of black 
holes. 

Moreover, we require that there be no paradox of Olbers type in the description of the 
model of the universe. 

It should be noted that because of the equation of minimal coupling (14.3) nondiagonal 
components of the metric tensor of Riemannian space--time gnm can be nonzero even when the 
nondiagonal components of the gravitational field fnm are equal to zero. 

In order that the nondiagonal components of the tensor gnm vanish when the corresponding 
nondiagonal components of the gravitational field are equal to zero, it is necessary and suf- 
ficient that b~ = 0. In this case we arrive at the equation of simplest minimal coupling 
(the P--M coupling) 

1 ynm~i~ - ~ [b2f.~f + b3V~i+b4y~f] (14.4) gnm=V.m+fn~--~ 

The condition of coincidence of post-Newtonian expressions for the gravitational and 
inertial mass of a static, spherically symmetric body requires that the parameters of the 
P--M coupling (14.4) satisfy the relation 2(b2 + b3 + b4) = I. 

15. Conservation Laws in the Field Theory of Gravitation 

Conservation laws valid for all theories of gravitation of class (A) were obtained in 
Sec. 12. The presence in theories of this class of a differential conservation law for the 
density of the total symmetric energy--momentum tensor of a system in flat space-time (12.18) 
makes it possible to obtain a corresponding integral conservation law. 

In Cartesian coordinates we have 

On [t~' + t~  ] = O. ( 15.1 ) 

Integrating this expression over some volume V for i = 0 and assuming that across the sur- 
face bounding this volume there are no flows of matter, we obtain 

O f f  | oo - - - -  dV[ tg+t~]  (15.2) 

Thus, in the radiation of gravitational waves the energy of the source must change, whereby 
if the gravitational waves carry positive energy the energy of the source must decrease. 
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All these conclusions and relations are also valid for a field theory of gravitation 
which is a concrete representative of t theories of class (A). Since symmetric and canonical 
energy--momentum tensors differ by the divergence of an antisymmetric tensor of third rank, 
the conservation laws (12.18) and (15.1) also hold for the canonical energy-momentum tensor. 

The canonical energy--momentum tensor of the free gravitational field can be obtained 
as follows. We write out the equality 

0Lg_0t[ 0Lg ] V 0Le 
(dlfmt) ]" (15.3) 

According to (13.27), the free gravitational field satisfies the equation 

at [a aLg ] (a--7~D J = []  f ~  = O, 

and hence expression (15.3) implies that the divergence of canonical energy--momentum tensor 
of the free gravitational field is equal to zero. From this we obtain 

- n  OLg  
t g z ~  - -  Lg6zn'~ O (On---n~mt) d Jtra" ( 15.4) 

Using the expression for the Lagrangian density of the free gravitational field (13.9), 
we obtain 

7"~, = ~ { -  ~ , " ~  [a...i,,,,o'i"'- -~ o.ja, S]+2a,i,,,a,,i,,,,-o,ia,,if (15.5) 

To obtain the symmetric energy--momentum tensor of the gravitational field t71 we must 
write the Lagrangian of the gravitational field Lg and the expression for fni in explicitly 
covariant form. Passing in expression (13.9) from the Cartesian coordinate system to an arbi- 
trary curvilinear system, we obtain 

Similarly, from the expression (13.6) we have 

fni -- ~i [DtDmTni-- DiD/Pmn-- DnDtvPmi %- DnD flPmt %- YniY sr (DtDs%m-- DsDrTmt)I" (15.7) 

To simplify the writing of the following expressions, we also introduce the notation 

A~ = -- A ml [O,~#t~k -- O~8~,~k -- #kgtcp,~ %- O~Ok%~] + 

+ :' I z ' " +  [ + 
h a  l s  k s t ;  k n  s I s k  n t ~-2~skOlAtn-- Y OtA - - 0  A %-~I 0 A t - - 2 y  0 A t ] + 

s l kn  n t k  t k  n l  i k  n l %-~. [OA  - - 0  A - - y  OtA + y  0 At]W2yk~A'~rO~n , - (15.8) 
- -  A ~. O~cp ~k - -  3 A kn Oi~p ns %- 2 A ks Okp n n - -  yik A n'n Osep nm %- 

%- 3AknO~cPfl-- AikO~cp . --2y~kA"tOt~p.t-- 2A~kOt~ u %- A"~O.cP t~ + 

%- yik AnlOze~ns %- Ai~On~P ns %- At  t [20~ep n s -  2ynsO~nn-- 2 0 s ~  + 

%- V ~ (0~q~.n-- 0.q~.~) %- 2V~0.~'q}. 

The symmetric energy--momentum t e n s o r  of the g r a v i t a t i o n a l  f i e l d  can be ob ta ined  by s u b s t i -  
t u t i n g  e x p r e s s i o n s  (15.6) and (15.7) in to  r e l a t i o n  (12.12) .  In a C a r t e s i a n  c o o r d i n a t e  system 
we have 

, r ,,1 [o,i,.,,,o.<S,,,_�89 a.#o'i] + 2a,i,.,,,a"i'I-a'ia"i}+ 
(15.9) 

1 im t n 1 n~ rn 1 t +~{o iS  o/,,, -~-o,,,S o / }-a-~ot{s ,  [o!s"~+o"s'q + 
_]_ f sn [Ot fsi %- Or/Is] __ fn~OI f_ St, [O~ f n ~_ On/j]}-- 2A("0, 

where, as usual, symmetrization is performed on indices in parentheses: 

A(.o ---- I (A" + AUg. 
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The tensor A nm contained in expression (15.8) in this case has the form 

An m_~__8.2~ --[fnm__~ynmf]. 

ni simplifies considerably: Away from matter Dfnm = 0, and hence the expression for tg 

tn~ _ ~ ~ 1 0 t  l f s  ~ [ 0 7  "~ + O" f ~'] - -  f fOrt/"~ - - / ,nOt /~  }, ( 15.10 ) 
g - - ' g - - 3 2 ~  

~ni is the canonical energy--momentum tensor of the free gravitational field (15.5). where tg 

We shall show that in the wave zone the symmetric energy--momentum tensor of the gravi- 
�9 ~ni only by nonwave tational field t~ z differs from the canonical energy--momentum tensor tg 

terms decreasing faster than I/r 2. Since in the wave zone we have the expansion 

anm(t--r, O, ~) ~0[1,~ J 
r 7 ~ - '  

for any function F(fml) we have 

where 

X~ 
he, =--. 

r 

T h e r e f o r e ,  e x p r e s s i o n  (15 .10 )  can be w r i t t e n  in  t he  form 

t, "' =-"'t, 32 ' o,~ 

Denoting differentiation with respect to time by a dot, from the additional conditions 
(13.28) we have 

Integrating this expression on time and setting the constants of integration equal to zero, 
since waves must not have a part not depending on time, we obtain 

From this it follows that in the wave zone the symmetric energy--momentum tensor of the 
gravitational field differs from the canonical energy--momentum tensor by a nonwave term de- 
creasing faster than I/r 2 with increasing r: 

= t g  + O  . (15.13) 

T h e r e f o r e ,  in  the  wave zone c o m p u t a t i o n s  c a r r i e d  ou t  u s i n g  e i t h e r  the  symmet r i c  or  
c a n o n i c a l  energy--momentum t e n s o r s  o f  the  g r a v i t a t i o n a l  f i e l d  g i v e  t he  same r e s u l t .  These 
t e n s o r s  a r e  a l s o  e q u i v a l e n t  in  c a l c u l a t i n g  t he  i n t e g r a l  c h a r a c t e r i s t i c s  o f  g r a v i t a t i o n a l  
r a d i a t i o n .  I n d e e d ,  f rom e x p r e s s i o n  (15 .10 )  we have 

Therefore, 

t ~  -t o o .  1 - - - - ' ~ "  o = ~ * ] - i ~ - o ~ { P  dm - f m ~  

oo - o o  1 
�9 �9 

If the boundary of the region of integration is located in the wave zone, then by rela- 
tions (15.11) and (15.12) we have 
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Choosing as a surface of integration a sphere of radius r (dSe = --r2ned~) and noting that 
the right side of expression (15.14) is antisymmetric in the indices ~ and B, we obtain 

d r  (15.15) 

Moreover, from relation (15.13) it follows that 

Thus, equivalence of the canonical and symmetric energy-momentum tensors in calculating 
integral characteristics of gravitational radiation is obvious from expressions (15.15) and 
(15.16). 

As will be shown in Sac. 24, the components ~$0 and t~e are quantities of positive sign, 
and only the transverse components of a gravitational wave contribute to the energy--mofnentum. 

Therefore, because of expression (15.2), in radiating waves the energy of the source is 
reduced. 

To obtain the density of the symmetric energy--momentum tensor of matter in flat space-- 
time t~ l we note that the metric tensor Yni enters the Lagrangian density of matter only 
through the metric tensor of Riemannian space--time. Therefore, the density of the tensor 
t~ 1 can be written in the form 

I 1 1'3 1 rI+  - 

1 - -  X [b~Tmtf tn" f z~ + b2Tmt / m t / m  + 2bs f  s* fnsr'ntYmt + 2ba/n~ fT~, tymt] = 2A(n~ 

We obtain the expression for A ni from formula (15.8) if we set 

: A , . l =  1 ~ m t  " 1 �9 1 
- -  -~ ! 4--~ Y"tT"'Y.i - -  ~ [bxTnt f n "  q- blTnmfn t + 

_i_b e~ ralTn~ f . t 2f_ beTrat f _{_ 2bafmtTm~n~ + 2b 4~t  fTniy~]. 
It thus follows from the results of this chapter that the gravitational field in the 

field theory of gravitation with minimal coupling is a field in the spirit of Faraday--Maxwell 
with the usual properties of a carrier of energy--momentum possessed by other physical fields. 

(15.18) 
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CHAPTER 3 

DESCRIPTION OF GRAVITATIONAL EFFECTS IN THE FIELD THEORY OF GRAVITAITON 

16. Post-Newtonian Approximation of the Field Theory of Gravitation 

The first question which any theory of gravitation should answer is the question of the 
correspondence between its predictions and the results of available gravitational experiment. 

Until recently the requirements on possible theories of gravitation reduced to the neces- 
sity of obtaining Newton's law of gravitation in the weak-field limit and also the descrip- 
tion of the three effects accessible to observation: the gravitational red shift in the field 
of the sun, the curving of a light ray passing near the sun, and the displacement of the peri- 
helion of Mercury. 

Thus, the available requirements on possible theories of gravitation were clearly insuf- 
ficient, since a large number of theories satisfied them. Formulation of qualitatively new 
experiments was required for further choice of gravitational theories. 

At the present time, in connection with the development of experimental technology, pri- 
marily cosmonautics, and the increase in the accuracy of measurements, new possibilities have 
appeared regarding more precise measurement of the orbital parameters of planets (primarily 
the moon), measurement of the retardation of radio signals in the gravitational field of the 
sun, and performance of new experiments within the solar system. These experiments make it 
possible to further restrict the circle of viable theories of gravitation~ 

Nordtvedt and Will [36] developed a formalism, called the parametrized post-Newtonian 
formalism to facilitate comparison of results of experiments performed within the solar sys- 
tem with predictions of various metric theories of gravitation (i.e., theories of gravita- 
tion according to which the action of a weak gravitational field on all physical process ex- 
cept gravitational processes is realized by a metric tensor of Riemannian space--time). 

In this formalism the metric of Riemannian space--time created by some body consisting 
of an ideal fluid is written as the sum of all possible generalized gravitational potentials 
with arbitrary coefficients called post-Newtonian parameters. Using these parameters of Will-- 
Nordtvedt, the metric of Riemannian space--time can be written in the form 

goo = 1 --  2U + 2~U 2 -  (2~ + 2 + ~ + ~t) O1 + ~,A + 

+ 2 ~ -  2 [(3v + 1 - 2~ + ~2) o2 + (1 + ~3) o~ + 3 (v + ~4) ~d + 

+ ( ~  - az - ~3) w ~U + ~ 2 w ~ w F u ~  - (2~3-  ~ )  w~v~;  ( 1 6 . 1  ) 
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